
Jason	Dean		
DS	450	Final	Project	
Instacart	Customer	Grocery	Basket	Prediction	
Code:		https://github.com/JTDean123	
	
Objective	and	Project	Overview	
The	goal	of	this	project	was	to	predict	the	ordered	items	in	grocery	baskets	of	new	Instacart	
orders.		The	data	from	this	project	is	originally	from	a	Kaggle	competition	and	the	scope	and	
objective	were	changed	slightly	for	this	project.		Here	we	evaluate	model	performance	using	
the	F1	score.			
	
For	this	project	we	were	supplied	three	sets	of	customer	order	data	sets	(prior,	training,	and	
test),	each	containing	order	id,	user	id,	order	number,	order	dow,	order	hour	of	day,	and	days	
since	prior	order.		Additionally,	we	were	provided	tabular	data	containing	product	information.		
A	departments	table	contained	department	id	and	a	description	of	department	(ex:		3,	bakery),	
an	aisles	table	contained	aisle	id	and	a	description	(ex:	2,	specialty	cheeses),	a	products	table	
contained	product	id,	product	name,	aisle	id,	and	department	id	(ex:	2,	all	seasons	salt,	104,	
13),	and,	importantly,	an	order	table	contained	information	linking	order	id,	user	id	for	the	
users	in	the	training	set	(but	not	the	test	set!).			
	
Initial	Data	Processing	
The	prior	users	data	set	contained	1384617	observations	and	the	training	and	test	data	sets	
contained	91846	and	393634	observations,	respectively.		This	data	set	was	in	essence	a	
relational	database,	and	my	first	step	was	to	join	the	aisles,	departments,	products,	and	orders	
tables	with	the	training	and	prior	data,	creating	two	data	frames	each	containing	prior	user	
orders	and	training	user	orders	with	features	mentioned	above.		Check	out	the	jupyter	
notebook	related	to	this	project	for	more	details.		After	loading	and	merging	the	data	I	moved	
forward	with	three	data	frames:			
	

1) A	prior	data	set	containing	prior	orders	for	users	in	both	the	test	and	train	data	sets	
containing	items	ordered	for	each	user,	order	id,	and	information	about	the	product	
(aisle,	department,	etc)	

2) A	training	data	set	containing	orders	for	user	in	the	training	set	containing	items	
ordered	for	each	user,	order	id,	and	information	about	the	product	(aisle,	department,	
etc)	

3) A	testing	data	set	containing	order	id,	user	id,	order	number,	order	day	of	week,	order	
hour	of	day,	and	days	since	prior	order.	

	
The	challenge	in	this	project	was	to	develop	a	model	to	predict	the	items	ordered	for	each	
order	in	the	testing	data	set	starting	from	the	four	features	listed	above	in	3.			
	
Exploratory	Data	Analysis	



I	next	embarked	on	EDA	for	the	training	data	set	to	get	an	understanding	of	the	relationship	
between	the	features.		As	shown	in	Figure	1,	I	found	that	the	highest	number	of	orders	was	
placed	at	3PM,	however	peak	ordering	times	were	between	9AM	and	7PM.		

		
Figure	1.		Total	number	of	orders	in	the	training	data	set	for	each	hour.		
	
Additionally,	I	found	that	there	was	a	relationship	between	the	total	number	of	orders	placed	
and	the	(anonymized)	day	of	the	week	(Figure	2).		



	
Figure	2.		Total	number	of	orders	in	the	training	data	set	for	each	day.			
	
I	next	determined	the	most	ordered	item	at	each	hour	and	found	that	it	was	bananas,	
indicating	that	Instacart	was	likely	hacked	by	monkeys	during	the	time	frame	that	this	data	was	
generated.		Total	basket	size	is	a	feature	that	is	available	in	the	training	and	prior	data	sets	but	
not	in	the	test	sets,	and	next	I	evaluated	the	importance	of	basket	size	on	order.		I	found	that	
the	mean	basket	size	was	10.0	(Figure	3).	
	



	
Figure	3.		Histogram	of	number	of	items	in	an	order	for	each	order.	
	
Additionally,	I	found	that	fraction	of	items	from	a	department	was	dependent	on	the	basket	
size	(Figure	4).	
	

	
Figure	4.		Fraction	of	total	items	ordered	from	a	department	vs	basket	size.			
	



As	shown	in	Figure	4,	the	majority	of	orders	that	contain	alcohol	have	a	basket	size	less	than	six	
items.		Furthermore,	the	majority	of	items	ordered	are	from	the	produce	or	dairy/eggs	
department	(Figure	5).	

			
	
Figure	5.		Total	number	of	orders	from	each	department.			
	
This	analysis	indicated	that	basket	size,	order	day	of	week,	order	time	of	day,	and	the	
department	may	contain	information	that	can	be	used	to	predict	if	an	item	is	ordered.		The	
mean	basket	size	for	each	user,	as	calculated	from	the	prior	data	set,	was	added	as	a	feature	to	
the	testing	data	set.			
	
Model	Building	
This	problem	was	formulated	as	a	binary	classification	prediction	task	as	follows.		First,	every	
item	ordered	for	each	user,	obtained	from	the	prior	dataframe,	was	added	to	for	each	order	to	
both	the	training	and	test	data	set.		For	example,	for	a	given	user	and	given	order	in	the	training	
data	set	the	items	that	they	were	known	to	order	were	assigned	a	value	of	1	and	the	remaining	



items	0.		In	the	test	set	each	order,	for	each	user,	contained	every	item	that	the	user	has	
ordered	in	their	history,	as	determined	from	the	prior	data.		This	strategy	obviously	generates	
an	unbalanced	data	set	since	the	majority	of	the	items	in	an	order	were	not	ordered	but	rather	
represent	unordered	items	that	were	ordered	in	previous	orders.		I	found	that	after	this	
merging	the	training	data	set	consisted	of	94.8%	unordered	items,	and	modeling	strategies	to	
deal	with	this	unbalance	are	detailed	below.		
	
I	decided	to	build	a	feed-forward	neural	network	to	predict	whether	an	item	was	ordered.		This	
model	type	was	chosen	not	because	I	felt	that	a	neural	network	was	the	best	architecture	for	
this	project	but	because	neural	networks	are	fun	and	I	hoped	to	learn	more	about	them.			As	
mentioned	above,	the	goal	of	this	model	was	to	predict	if	an	item	was	ordered	based	on	the	
following	features:	
	

1) Order	number	
2) Order	day	of	week	(one	hot	encoded)	
3) Order	hour	of	day	
4) Days	since	prior	order	
5) Basket	size	(calculated	as	described	above)	
6) Aisle	ID	(not	one	hot	encoded)	
7) Department	ID	(not	hot	encoded)	

	
Before	fitting	a	neural	network	to	this	training	data	the	order	day	of	week	feature	was	one	hot	
encoded.		I	was	able	to	achieve	better	test	loss	by	not	one	hot	encoding	aisle	and	department	
IDs.		Next	the	training	data	was	split	into	training	and	test	data	sets	(70|30)	and	a	model	was	
built	in	Keras	with	a	Tensoflow	backend	as	shown	in	Figure	6.	
	



	
	
Figure	6.	Feed	forward	model	architecture	to	predict	if	an	item	was	ordered.	
As	shown	in	Figure	6,	the	model	consisted	of	3	hidden	layers,	the	input	layer	contained	128	
nodes,	and	each	subsequent	layer	had	half	of	less	of	the	number	of	nodes	as	the	previous	node.		
The	training	data	was	unbalanced,	with	95%	of	the	data	representing	unordered	items,	and	to	
compensate	for	this	I	introduced	a	class	weight	of	20	for	class	1	(ordered),	thus	penalizing	the	
model	heavily	for	incorrect	predictions	on	ordreded	items.		Without	this	class	weighting	the	
model	generated	a	prediction	of	0	for	every	observation.		The	model	was	found	to	generally	be	
insensitive	to	the	number	of	hidden	layers	and	nodes,	although	the	size	of	the	model	was	
limited	by	the	computing	capacity	of	my	laptop.		I	found	that	adding	dropout	layers	to	the	
model	greatly	decreased	overfitting	in	the	model	and	improved	its	ability	to	generalize	to	new	
data.		Additionally,	I	found	that	the	adam	optimizer	was	superior	to	sgd	with	regards	to	loss	
during	training.		Finally,	a	batch	size	of	1000	was	used	for	each	epoch,	and	I	found	that	the	loss	
generally	converged	after	~100	epochs.			
	
Additional	fun	facts	–	batch	normalization,	as	well	as	normalizing	continuous	variables,	did	not	
increase	model	performance.			
	
In	the	process	of	building	this	model	I	discovered	that	parameter	tuning	a	neural	network	is	a	
bit	of	a	rabbit	hole	–	there	are	many	possibilities	and	dependencies	between	model	
parameters.		For	this	optimization	I	performed	manual	tuning,	however	moving	forward	I	feel	
the	best	approach	will	be	to	test	multiple	model	architectures	in	a	cluster	environment.			
	
As	shown	in	Figure	7,	I	found	that	a	order	probability	threshold	of	0.8	generated	an	F1	score	of	
0.35	on	the	30%	of	the	training	data	that	was	held	out	for	testing.	



	
	
	

	
Figure	7.		F1	score	versus	predicted	probability	of	an	order	for	the	test	data	set.	
	
As	shown	in	Figure	7,	by	altering	the	probability	cutoff	of	what	was	called	an	order	we	were	
able	to	walk	the	precision/recall	tightrope	and	identify	the	optimal	F1	score,	the	key	metric	in	
this	project.			
	
This	model	was	used	to	predict	whether	or	not	an	item	was	ordered	in	the	test	data	set	and	the	
item	with	the	highest	probability	submitted	calculated	and	submitted	for	evaluation.	
	
Thanks!	


